

Pimpri Chinchwad Education Trust's Pimpri Chinchwad College of Engineering

De	epartment: Mechanical Engg	Academic year -202	3-24
	Course Outlin	ne	

Class: SY Mechanical Name of the Course: Kinematics and Theory of Machines

Relevance of the course:

Kinematics and Theory of Machines is a fundamental course in Engineering Design Domain. It builds understanding of students in transforming and transmitting motion, and key elements of a machine. Curriculum indent to address and apply to a wide domain of engineering from Machineries in all fields, Agriculture, Bio-mechanics, Surgical tools, Automation Machinery and the builds base for Robotics.

Pre-requisites:

Engineering Mathematics, Fundamental of Mechanics, Power Transmission Elements, Type of Motion

Teaching	Scheme			Evaluation Scheme					
Lecture	Tutorial	Credit	Hours	IE	MTE	ETE	Total		
3		3	3	2	3	5	1		

Points discussed and finalised:

- 1. Total 45 lectures are to be planned including assessment, conduct 3 lectures per week for Theory
- 2. CO-PO mapping in addressing of course contents and IE activities finalised.
- 3. Experiments: A1 to A4, B1, B2, and B5 (each be given 2 turns for conduct, C2 and C4 be conducted.
- 4. To prepare model Question paper with CO, BL and PI
- 5. To ensure and check understanding numerical to be discussed in the practical class.
- 6. Identification of Weak and Fast learners through class discussions, MTE.
- 7. Questioner to be given to students for identified mechanism requirements, students will submit the same with Experiment A1
- 8. Paper Duration for MTE: 2 Hrs and ETE 3 Hrs due to graphical nature of paper.
- 9. Additional Numerial Assignments be given for Unit 2 and 4 (4 questions each)

Internal Assessment Tools and Activities:

- 1. IE-1 Mode: consist of based on first two units
 - a. Survey for Identification of Mechanism (PO7, PO12)
 - b. Velocity Analysis using Mech Analyser Open Source software PO5

 IE-2 assessment will be through based on unit 4 & 5 students will design and develop a Model/Toy with cams and Gears Mechanism. (Group of TWO Students) (PO 7, 9,10,11,12)

No	0		Mapping with Program Outcomes (POs)							Mapping with PSOs						
INO.	005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	CO1	*	*			*		*					*	*		
2	CO2		*	*		*								*		
3	CO3	*	*											*		
4	CO4			*	*	*				*			*	*		
5	CO5	*	*											*		
6	CO6		*	*										*		

No	<u> </u>	Теа	Teaching Plan for POs and PSO's								
INO.	COS	PO1	PO2	PO3	PO4	PO5	PSO1				
1	CO1	2	3			1	1	8			
2	CO2		2	5		1	1	9			
3	CO3	2	5				1	8			
4	CO4			2	2	1	1	6			
5	CO5	2	6				1	9			
6	CO6		2	2			1	5			
Cla	sses	6	18	9	2	3	6	48			

CO	Statement	Theory		Method of direct			
		Classes		Ass	essment		
	Student will be able to	Number					
			Bloom's	Internal	External		
			Level				
CO1	Identify machanisms in real life applications	6+1+1	L2	IE 1	ETE		
COI	identify mechanisms in real me applications.		BLM 0.6	MTE	EIE		
	Analyse velocity & acceleration of	7+1+1	L3	IF 1			
CO2	mechanism by Graphical and analytical		BLM 0.7	IL I MTE	ETE		
	method						
	Compute Frictional torque and Power in	7+1	L3				
CO3	Clutch and Brake for given application and		BLM 0.7	MTE	ETE		
	gyroscopic couple for an application.						
CO4	Synthesize Cam for given application	5+1	L4	IE 2	FTF		
04			BLM 0.8		LIL		
COF	Apply Fundamentals of Gear Theory for	8+1	L3	IE 2	ETE		
	kinematic design of gears		BLM 0.7		EIE		

CO6 Analyse Epicyclic Gear Train for speed and	5	L3 BLM 0.7	ETE
roique.			

Marks Distribution:

	IE1	N	ITE (5	0)	IF 2	ETE (80)						
CO	(10)	Q1/2 a,b,c	Q3/4 a,b	Q5/6 a,b,c	(10)	Q1/2 a	Q1/2 b	Q1/2 c	Q3/4 a,b	Q5/6 a,b,c,d	Q7/8 a,b	
CO1	5	16				3						24
CO2	5		16				3					24
CO3				18				8				26
CO4					5				20			25
CO5					5					24		29
CO6											22	22

Content Delivery Methods:

CDM1. Lecture with interaction CDM4. Animations, Demonstration (through Models, chart, videos etc.) CDM5. Case-study based, Survey CDM7. Presentation

Dr Masnaji Nukulwar	Mr Atul Kashid	Mr. Chandan Ingole
Course Faculty Div B	Course Faculty Div B	Course Faculty Div A
Course Coordinator Dr Masnaji Nukulwar	Module Coordinator Dr L V Awadhani	